
D01 – Quadrature

D01BAF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

D01BAF computes an estimate of the definite integral of a function of known analytical form, using a
Gaussian quadrature formula with a specified number of abscissae. Formulae are provided for a finite
interval (Gauss–Legendre), a semi-infinite interval (Gauss–Laguerre, Gauss–Rational), and an infinite
interval (Gauss–Hermite).

2 Specification

real FUNCTION D01BAF(D01XXX, A, B, N, FUN, IFAIL)
INTEGER N, IFAIL
real A, B, FUN
EXTERNAL D01XXX, FUN

3 Description
3.1 General

This routine evaluates an estimate of the definite integral of a function f(x), over a finite or infinite
range, by n-point Gaussian quadrature (see Davis and Rabinowitz [1], Froberg [2], Ralston [3] or Stroud
and Secrest [4]). The integral is approximated by a summation

n∑
i=1

wi f(xi)

where the wi are called the weights, and the xi the abscissae. A selection of values of n is available. (See
Section 5.)

3.2 Both Limits Finite ∫ b

a

f(x) dx.

The Gauss–Legendre weights and abscissae are used, and the formula is exact for any function of the
form:

f(x) =
2n−1∑
i=0

cix
i.

The formula is appropriate for functions which can be well approximated by such a polynomial over [a, b].
It is inappropriate for functions with algebraic singularities at one or both ends of the interval, such as
(1 + x)−1/2 on [−1, 1].

3.3 One Limit Infinite ∫ ∞

a

f(x) dx or
∫ a

−∞
f(x) dx.

Two quadrature formulae are available for these integrals.

(a) The Gauss–Laguerre formula is exact for any function of the form:

f(x) = e−bx
2n−1∑
i=0

cix
i.

This formula is appropriate for functions decaying exponentially at infinity; the parameter b should
be chosen if possible to match the decay rate of the function.
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(b) The Gauss–Rational formula is exact for any function of the form:

f(x) =
2n+1∑
i=2

ci

(x + b)i
=

∑2n−1
i=0 c2n+1−i(x + b)i

(x + b)2n+1
.

This formula is likely to be more accurate for functions having only an inverse power rate of decay
for large x. Here the choice of a suitable value of b may be more difficult; unfortunately a poor
choice of b can make a large difference to the accuracy of the computed integral.

3.4 Both Limits Infinite ∫ +∞

−∞
f(x) dx.

The Gauss–Hermite weights and abscissae are used, and the formula is exact for any function of the form:

f(x) = e−b(x−a)2
2n−1∑
i=0

cix
i.

Again, for general functions not of this exact form, the parameter b should be chosen to match if possible
the decay rate at ±∞.

4 References
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[3] Ralston A (1965) A First Course in Numerical Analysis McGraw–Hill 87–90

[4] Stroud A H and Secrest D (1966) Gaussian Quadrature Formulas Prentice–Hall

5 Parameters

1: D01XXX — SUBROUTINE, supplied by the NAG Fortran Library. External Procedure

The name of the routine indicates the quadrature formula:

D01BAZ, for Gauss–Legendre quadrature on a finite interval;
D01BAY, for Gauss–Rational quadrature on a semi-infinite interval;
D01BAX, for Gauss–Laguerre quadrature on a semi-infinite interval;
D01BAW, for Gauss–Hermite quadrature on an infinite interval.

2: A — real Input
3: B — real Input

On entry: the parameters a and b which occur in the integration formulae:

Gauss–Legendre:
a is the lower limit and b is the upper limit of the integral. It is not necessary that a < b.

Gauss–Rational:
b must be chosen so as to make the integrand match as closely as possible the exact form given
in Section 3.3(b). The range of integration is [a,∞) if a + b > 0, and (−∞, a] if a + b < 0.

Gauss–Laguerre:
b must be chosen so as to make the integrand match as closely as possible the exact form given
in Section 3.3(a). The range of integration is [a,∞) if b > 0, and (−∞, a] is b < 0.

Gauss–Hermite:
a and b must be chosen so as to make the integrand match as closely as possible the exact form
given in Section 3.4.
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Constraints:

Gauss–Rational: A + B �= 0,
Gauss–Laguerre: B �= 0,
Gauss–Hermite: B > 0.

4: N — INTEGER Input

On entry: the number of abscissae to be used, n.

Constraint: N = 1,2,3,4,5,6,8,10,12,14,16,20,24,32,48 or 64.

5: FUN — real FUNCTION, supplied by the user. External Procedure

FUN must return the value of the integrand f at a given point.

Its specification is:

real FUNCTION FUN(X)
real X

1: X — real Input
On entry: the point at which the integrand must be evaluated.

Some points to bear in mind when coding FUN are mentioned in Section 7.
FUN must be declared as EXTERNAL in the (sub)program from which D01BAF is called.
Parameters denoted as Input must not be changed by this procedure.

6: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, −1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL �= 0 on exit,
users are recommended to set IFAIL to −1 before entry. It is then essential to test the value of
IFAIL on exit. To suppress the output of an error message when soft failure occurs, set IFAIL to 1.

6 Error Indicators and Warnings

Errors or warnings specified by the routine:

IFAIL = 1

The N-point rule is not among those stored. If the soft fail option is used, the answer is evaluated
for the largest valid value of N less than the requested value.

IFAIL = 2

The value of A and/or B is invalid.

Gauss–Rational: A + B = 0.

Gauss–Laguerre: B = 0.

Gauss–Hermite: B ≤ 0.

If the soft fail option is used, the answer is returned as zero.
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7 Accuracy

The accuracy depends on the behaviour of the integrand, and on the number of abscissae used. No tests
are carried out in the routine to estimate the accuracy of the result. If such an estimate is required, the
routine may be called more than once, with a different number of abscissae each time, and the answers
compared. It is to be expected that for sufficiently smooth functions a larger number of abscissae will
give improved accuracy.

Alternatively, the range of integration may be subdivided, the integral estimated separately for each
sub-interval, and the sum of these estimates compared with the estimate over the whole range.

The coding of the function FUN may also have a bearing on the accuracy. For example, if a high-order
Gauss–Laguerre formula is used, and the integrand is of the form

f(x) = e−bxg(x)

it is possible that the exponential term may underflow for some large abscissae. Depending on the
machine, this may produce an error, or simply be assumed to be zero. In any case, it would be better to
evaluate the expression as:

f(x) = exp(−bx + ln g(x))

Another situation requiring care is exemplified by
∫ +∞

−∞
e−x2

xm dx = 0, m odd.

The integrand here assumes very large values; for example, for m = 63, the peak value exceeds 3 × 1033.
Now, if the machine holds floating-point numbers to an accuracy of k significant decimal digits, we could
not expect such terms to cancel in the summation leaving an answer of much less than 1033−k (the weights
being of order unity); that is instead of zero, we obtain a rather large answer through rounding error.
Fortunately, such situations are characterised by great variability in the answers returned by formulae
with different values of n. In general, the user should be aware of the order of magnitude of the integrand,
and should judge the answer in that light.

8 Further Comments

The time taken by the routine depends on the complexity of the expression for the integrand and on the
number of abscissae required.

9 Example

This example program evaluates the integrals
∫ 1

0

4
1 + x2

dx = π

by Gauss–Legendre quadrature; ∫ ∞

2

1
x2 ln x

dx = 0.378671

by Gauss–Rational quadrature with b = 0;
∫ ∞

2

e−x

x
dx = 0.048901

by Gauss–Laguerre quadrature with b = 1; and
∫ +∞

−∞
e−3x2−4x−1 dx =

∫ +∞

−∞
e−3(x+1)2e2x+2 dx = 1.428167

by Gauss–Hermite quadrature with a = −1 and b = 3.

The formulae with n = 4, 8, 16 are used in each case.

D01BAF.4 [NP3390/19/pdf]



D01 – Quadrature D01BAF

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* D01BAF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)

* .. Local Scalars ..
real A, ANS, B
INTEGER I, IFAIL

* .. Local Arrays ..
INTEGER NSTOR(3)

* .. External Functions ..
real D01BAF, FUN1, FUN2, FUN3, FUN4
EXTERNAL D01BAF, FUN1, FUN2, FUN3, FUN4

* .. External Subroutines ..
EXTERNAL D01BAW, D01BAX, D01BAY, D01BAZ

* .. Data statements ..
DATA NSTOR/4, 8, 16/

* .. Executable Statements ..
WRITE (NOUT,*) ’D01BAF Example Program Results’
WRITE (NOUT,*)
WRITE (NOUT,*) ’Gauss-Legendre example’
DO 20 I = 1, 3

A = 0.0e0
B = 1.0e0
IFAIL = 1

*
ANS = D01BAF(D01BAZ,A,B,NSTOR(I),FUN1,IFAIL)

*
IF (IFAIL.NE.0) THEN

WRITE (NOUT,99998) ’IFAIL = ’, IFAIL
WRITE (NOUT,*)

END IF
IF (IFAIL.LE.1) WRITE (NOUT,99999) NSTOR(I),

+ ’ Points Answer = ’, ANS
20 CONTINUE

WRITE (NOUT,*)
WRITE (NOUT,*)
WRITE (NOUT,*) ’Gauss-Rational example’
DO 40 I = 1, 3

A = 2.0e0
B = 0.0e0
IFAIL = 1

*
ANS = D01BAF(D01BAY,A,B,NSTOR(I),FUN2,IFAIL)

*
IF (IFAIL.NE.0) THEN

WRITE (NOUT,99998) ’IFAIL = ’, IFAIL
WRITE (NOUT,*)

END IF
IF (IFAIL.LE.1) WRITE (NOUT,99999) NSTOR(I),

+ ’ Points Answer = ’, ANS
40 CONTINUE

WRITE (NOUT,*)
WRITE (NOUT,*)
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WRITE (NOUT,*) ’Gauss-Laguerre example’
DO 60 I = 1, 3

IFAIL = 1
A = 2.0e0
B = 1.0e0

*
ANS = D01BAF(D01BAX,A,B,NSTOR(I),FUN3,IFAIL)

*
IF (IFAIL.NE.0) THEN

WRITE (NOUT,99998) ’IFAIL = ’, IFAIL
WRITE (NOUT,*)

END IF
IF (IFAIL.LE.1) WRITE (NOUT,99999) NSTOR(I),

+ ’ Points Answer = ’, ANS
60 CONTINUE

WRITE (NOUT,*)
WRITE (NOUT,*)
WRITE (NOUT,*) ’Gauss-Hermite example’
DO 80 I = 1, 3

A = -1.0e0
B = 3.0e0
IFAIL = 1

*
ANS = D01BAF(D01BAW,A,B,NSTOR(I),FUN4,IFAIL)

*
IF (IFAIL.NE.0) THEN

WRITE (NOUT,99998) ’IFAIL = ’, IFAIL
WRITE (NOUT,*)

END IF
IF (IFAIL.LE.1) WRITE (NOUT,99999) NSTOR(I),

+ ’ Points Answer = ’, ANS
80 CONTINUE

STOP
*
99999 FORMAT (1X,I5,A,F10.5)
99998 FORMAT (1X,A,I2)

END
*

real FUNCTION FUN1(X)
* .. Scalar Arguments ..

real X
* .. Executable Statements ..

FUN1 = 4.0e0/(1.0e0+X*X)
RETURN
END

*
real FUNCTION FUN2(X)

* .. Scalar Arguments ..
real X

* .. Intrinsic Functions ..
INTRINSIC LOG

* .. Executable Statements ..
FUN2 = 1.0e0/(X*X*LOG(X))
RETURN
END

*
real FUNCTION FUN3(X)
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* .. Scalar Arguments ..
real X

* .. Intrinsic Functions ..
INTRINSIC EXP

* .. Executable Statements ..
FUN3 = EXP(-X)/X
RETURN
END

*
real FUNCTION FUN4(X)

* .. Scalar Arguments ..
real X

* .. Intrinsic Functions ..
INTRINSIC EXP

* .. Executable Statements ..
FUN4 = EXP(-3.0e0*X*X-4.0e0*X-1.0e0)
RETURN
END

9.2 Program Data

None.

9.3 Program Results

D01BAF Example Program Results

Gauss-Legendre example
4 Points Answer = 3.14161
8 Points Answer = 3.14159
16 Points Answer = 3.14159

Gauss-Rational example
4 Points Answer = 0.37910
8 Points Answer = 0.37876
16 Points Answer = 0.37869

Gauss-Laguerre example
4 Points Answer = 0.04887
8 Points Answer = 0.04890
16 Points Answer = 0.04890

Gauss-Hermite example
4 Points Answer = 1.42803
8 Points Answer = 1.42817
16 Points Answer = 1.42817
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